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Plane wave propagation in a semi-infinite rod of constant cross-section and in a half- 
space with a plane boundary filled with a continuous material, due to the action of a stress 
pulse applied to the endface of a rod along its axis or normally to the surface of the half- 
space, is described by a system of partial differential equations 

Ou , c% 
~ u ,  Oz=0 ' __._ ----0, 

where po is the initial density of the material, u is the mass flow rate of elementary layers 
of material arranged perpendicularly to the direction of wave propagation; t is the time, h 
is the Lagrange coordinate marking the initial position of the layer, o is the stress acting 
in sections parallel to the wave front along the direction of its propagation in the case of 
the half-space; in the case of the rod, this is a conditional stress, ioe., a force acting 
in a certain section of the rod, referred to the initial cross-sectional area (considered 
positive under compression), c = --3W/~h is the deformation, and W is the displacement of the 
elementary layer. 

The behavior of the separate elastic-plastic materials in the case of a uniaxial stress 
state realizable in the compression-tension of thin rods, or the case of uniaxial strain that 
is characteristic for the loading of materials by plane shocks, can be described approximate- 
ly by a Prandtl scheme in some range of strains [I] (Fig. !). 

Loading a material from an initial undeformed state to stresses less than the yield point 
~s occurs purely elasticall~. The relation of the stress to the strain is subject to the 
linear relationship ~ = poco e, where co is the velocity of longitudinal elastic wave propa- 
gation. In the case of the rod poc~ = E (Young's modulus), and in the case of the half-space 
Poc~ = X + 2~ (X and ~ are the Lame elastic constants). Loading on the plastic section ~ 
above the yield point is subject to the relationship o = o s + poc=(g--~s), where poc 2 is the 
strengthening modulus, and e s is the strain corresponding to the yield Os. Moreover, it is 
assumed in this model that unloading of the element of material that has achieved the state B 
is accomplished along the line BC parallel to the elastic section OA until a reverse plastic 
flow starts at the point C along the line CD parallel to AB. 

Let us examine the wave process in an elastic-plastic material subject to the Prandtl 
scheme originating because of the action of the stress pulse shown at the upper left in Fig. 
2, on the boundary. The initial stage of the pulse is smooth loading of the material on the 
boundary from zero to a maximum stress Om, the second stage is characterized by smooth un- 
loading from o m to zero. 
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The qualitative wave pattern of the process in a plane (Fig. 2, upper right) was con- 
sidered in detail in [i], where it was shown that the flow in this plane separates into a 
number of elastic and plastic domains separated by solid lines in the figures. An elastic 
predecessor in which the stress grows from zero to the line h = Co(t + T) is propagated in 
domain I, where T > 0 is the duration of the load rise, to o s on the line h = Co(t -- tA). 
The stress is constant and equal to Os in domain II. Domains III and IV are a plastic loading 
wave and an elastic unloading wave, respectively. They are separated by the line OM called 
the unloading wave in [!], on which continuity conditions for the stress, velocity, and 
strain are satisfied. 

Taking account of the Prandtl a--E-diagram written in the characteristic form [2], the 
system (I) is easily integrated and results in the following relations: 

a) In the elastic domains I and IV 

(I + poCoU = c o n s t ;  ( 2 )  

is satisfied along the lines h = cot + const, while 

cr - -  poCoU = c o n s t ;  ( 2 ' )  

is satisfied along the lines h = --cot + c onst. 

b) In the plastic domain III the relationships 

a-r-poCZ, ---- c o n s t  

are satisfied, respectively on the rectilinear C + and C--characteristics h = • ct + consto 

Let f(t) denote the stress on the rising part of the boundary pulse for t <~0, and let 
g(t) be the stress on the pulse drop for t > O. 

The solution is known in domains I, II and III: 

a(h,  t )  = poCoU(h, t) = ](t  - -  h/co) 

o(h, t) = OoCou(h, t) = G 
c o - -  c 

(h, t) = ~ - -  + poCU (h ,  t)  = ] ( t  - -  h /c )  
c o 

( d o m a i n  i), 

( d o m a i n  II) t 

( d o m a i n  Ill). 

The main problem is to determine the form of the unloading curve OM and the flow in 
domain IV. Let w(t) denote the velocity of the material on the boundary, and H(t) the 
e~uation of the curve OM. Let us write the characteristic relationships operating along the 
C T characteristic BC and the C- characteristic CD (see Fig. 2): 

g [t - -  I t  (t)/Co] + PoCo w [ t  - -  H (t)/Co] - -  c~ c + c ] I t - -  t i  (t)/c] - -  --7---c o - -  c (Is, 
(3) 

g [t + 1 t  ( t ) / c  o] - -  poCo w [t + H . ( t ) / c o l  --.-- % --c ~ (I~ - -  - - 7 - -  c~ - -  ~ i [t - -  1 t  ( t ) /c] .  

The solution of the obtained system of functional equations (3) that determine the 
unknown functions w and H is quite complex, hence, we use the inverse method of solving the 
problem of an unloading wave [i] by assuming that the unloading wave is represented by a 
straight line, ioeo, H(t) = ato This assumption permits obtaining an explicit analytic so- 
lution of the problem for certain simple but sufficiently interesting forms of the boundary 
stress pulse. Substituting H(t) = at into the first equation of the system (3), and re- 
placing (Co -- a)t/co by z, we obtain the relationship 

g(z)_{_poCoW(z)  Co+C ( Co c - a  ) c o - - c  
c ] . . . . .  c (Is" c o --a Z 

The second equation yields the relation 

g(z)  poCoW(z) % - ~ . o  ~ ~  
c c 

c o c - - a  \ 
{ 7 --~ - z  I 
�9 C o . - ~ - . a  ) "  

564 



----v._ , , , e l f  
2 IN ~ vs 

! L,/I 

2 0 o 2 4 

i~ = 2 c T  

A 

i 

k: ,~ g ,/ 7 

Fig, 2 

The given form of the loading part of the pulse f(z) determines the stress g(z) and the mass 
flow rate w(z) uniquely on the dropping part of the pulse for t > 0: 

~c I ~ ,7-o---~) > ! 1 - 7 - % + < ~ z  , 

rc  + c i" co c_ = s  - "] , c ~  i ' =] - -~ ~,o f { ' 7  Co--a s ' f "  <o e--<," __9Co - c -  !i ~ (4 )  
~ ! ) o C o [  <, - ) c . ,  ~ , . o + ~ :  , c 

Let us assume that the function f(t) has the form 

i i(t) = ~ , ~ ,  [i -- (-t/T)~j, (5) 
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for t ~.]0, where a is greater than zero. Then for t y'>0 we have from (4) and (5) 

~(o, t) = ,~(t) = ~,~ it - K(t/~")~],. (6) 

where 

i< (7) 

The value of a varies within the range c~a ~co, which is the necessary condition for the 
existence of an unloading wave [i, 3]. In this range (7) defines K as a function of a that 
grows monotonically from zero at a = c to +=o as a § Co. Let us note that for a = 1 and 2 and 
K = 1 formula (7) results in dependences of a on K to the accuracy of a notation in agreement 
with the formulas for the initial velocity of the unloading wave OM obtained earlier and 
presented in [i]. 

We obtain for the velocity of the material on the boundary for t~0/j 

~'~ L (t/r) ~, u (0, t) = u; (t) = u , , , -  ,Oo--- 7 ( 8 )  

where 

I. 
u,,, = o /poCo + ( a ~  - -  ~)l,ooC. 

It follows from (6) and (8) that the stress ~(0, t) and the mass flow rate u(0, t) are 

related by the linear relationship 

e = (rm + PoCo(K/L)(u  - -  urn) 

on the boundary of the material in the elastic unloading domain. 

By using the characteristic relationships (2), the boundary conditions (6) and (8) at 
the point P' on the axis t and the boundary conditions at the point P" on the unloading line 

OM, we obtain a solution of the problem 

[ ( 
u 

)i h)]o} u(h ,  t ) =  + - - ,00% [--~Y--c \ c r cr ~ c T ~ cT 

(9) 

for an arbitrary point P in domain IV (Fig. 2). Differentiating ~ with respect to t and 
taking account of the condition at --h~0, which is satisfied in domain IV, we obtain that 
3~/3t < 0 in this domain, i.e., unloading of the material actually occurs. 

The stresses in the plastic load wave reach a maximum on the line OM'. The distribution 
of these maximal stresses over the coordinate h is determined by the expression 

~o (h)= (~'" [I--( c~-~: a c h r )=] " (i0) 

The line H = at intersects the head C + characteristic AM on which the stress equals Os, 

at a point with the coordinates 

t ,  c '  " t a ) ~ ,  a ( _ ~ _ )  

where 
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Furthermore, depending on the amplitude of the boundary pulse em~ different flow modes 
can be realized. If the amplitude satisfies the inequality 

2c[Co--a~ e~ 

+ [ = <  

J 

then the C- characteristic emerging from the point (t,, h,) will intersect the t axis at a 
time when the action of the boundary pulse has still not ceased. 

The length of the plastic deformation zone is determined by the coordinate h,~ The 
duration of the purely elastic stress pulse passing into the material located farther than 
the section h, is the same as for the initial boundary pulse, and only the apex of the stress 
pulse above o s is cut off. 

If the amplitude of the boundary stress pulse satisfies the double inequality 

am 2c 
A<--5-[ < l + = B ,  (%--c) [I-- {c~ (12) 

\% + J 

where A is determined in (ii), then a flow mode will be realized, for which the C- character- 
istics emerging from the point (t,, h,) will intersect the t axis at a time when the action 
of the boundary pulse has already ceased. The C + characteristic emerging from the t axis at 
the time the action of the boundary pulse ceases will intersect the head C § characteristic 
AM of the plastic wave at a later time than the unloading line, hence the plastic flow will 
terminate at the point (t,, h,) as before. The length of the plastic deformation zone is de- 
termined by the coordinate h,. However, the duration of the purely elastic pulse passing 
into the material to the right of h, increases as compared to the duration of the boundary 
pulse. 

Results of a computation of the problem whose solution by using a graphoanalytical method 
is presented in [I], are presented in Fig. 2. The parameters of the problem have the follow- 
ing values: ~ = 2, e/co = 0.25 a/co = 0.359 (K = i), Om/Os = 2. The boundary pulse is the 
parabola shown in the left upper part of Fig. 2. In this case the pulse amplitude satisfies 
the condition Om/Os > B, where B is determined in (12) so that the C + characteristic KL will 
intersect the line OM' at the point L to which arrives the C+-characteristic of the plastic 
loading wave carrying a greater value of the stress than the yield point Os o Hence, the 
plastic flow has not yet terminated on the rectilinear section of the unloading line OL. 

There are no stresses in the domain V on the boundary of the material above the point K, 
and the boundary velocity on the section KN is determined as a function of the time from the 
following relationship 

c I 

We hence obtain the solution for the domain V 

:( %t + lq~ C0--C ~--C C6 

(i3) 

and the domain Vll 

%-c Co_C{ _ P~176 ((~--a~)--(~---Ti---c \Jo~a cr ]" (14) 
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The equation of the next, senerally, curvillinear section LMR of the unloading line can 
be obtained by expressing the C +-invariant (2) in terms of values of the flow variables along 
a part of the boundary KN and in terms of values in the plastic loading wave, which yields 

the relationship 

2c \-TY-/ 2c 77, c~ = I (15) 

We obtain for the cases a = 1 and 2, respectively 

h 2c (c o + ~) 2%~ + ~ (4  + ~) 
cT - -  co2 § 2aCo § C2 -~- c (c~ § 2ac o §  2) T 

or h l c T  = b + k l c . t / T ,  where 

h 
cT 

c < E  < a ,  

I -- 0? 2 

2c 

c O §  

where ~ = ( a - - c ) / ( C o  + a); (5 = ( c  o - c ) / ( c  o + c). 

A parametric representation of the curve LMR can be obtained for arbitrary a. Let us put 
z = (h -- cT)/cT and ~ = (cot -- h)/coT. Then the relation between these parameters is deter- 
mined by (15). Two forms of the parametric representation of the curve LMR appear as follows 

. T  = Co ~ ~ + a - ~  V--S=-~ ~ - - -  - -  Co - -  C ' c T  T + Z ,  

where z varies between the value 
point M or A (z A = (i -- ffs/Om)t/u): 

{ [ ~--~4-7 ~ -~ '<~-c ~~ \<~I~I<~ 
- % - c ~ + T  0 + ~ ~ ' 

C~P C 

at the point L (z L = (h L -- ctL)/CT) and the value at the 

(16) 

where ~ varies in the corresponding interval from the value at the point L or K to the value 

at the point M. 

The solution of the problem in the domain Vl can be represented in the form 

%+c%+~ (~,,+c 2c ]'-,"~] c ~ 2 4 7  - -  ~ - -  2 z +  - - -  ~" z~ - 

~ - -  Co_~ Co ~ - c  ~ - - ~  Co-C ~ j '  

p o C o U = ~ m  2 (~  . ~ c r  " 

If the second and third equations are solved for z and substituted into the first equation, 
then two relationships are obtained that determine o and u as implicit functions of h and t. 

The solution at any point of the domain VIII is determined easily since the values of 
the stress and the mass flow rate are known on the boundary NS as a function of the time: the 

stress is ~ = 0 and the mass flow rate is determined in the parametric form 

t 

T 

co--c  ( ~ - - ~ , ~  z~t  = w ( t )  9oco ' poCoU = - - 7 - - o ' m  \, (~m / 

%+' > 
- -  co 2 z +  c~ z ~ - - -  

co__ c c o a - - c  \Co--C c o c,] J 
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or in implicit form if the fir~: ~q~ation is solved ~or z and substituted into the second. 

For an arbitrary point (h~ t) we have 

o(h~ t) - -  pocou(h, ~) = --~oCoW(t + h/co)~ 
~(h, t) + poCoU(h, t) = pocow(t  - -  h/Co). 

In domain IX we have o(h, t) -- 0ocou(h, t) = 0, o(h, t) + Oocou(h, t) = pocow(t -- h/co). 
formulas defining ~ and u as implicit functions o~ h and t can be obtained for these domains~ 

The rest state holds in domain X. 

Dependences of the stress on the time in three sections, h = cT, h = 2cT, and h = hM~ 
are presented in the lower part of Fig. 2. It is seen from a comparison between these graphs 
and those presented in [!] that the graphoanalytic method does not expose the characteristic 
singularity of the solution in the unloading domain in this case. For instance, the non- 
monotonic nature of the stress changes on the section ABCD and also the explicit breaks on 
the appropriate characteristics do not appear in the section h = cT in the graphoanalytical 
approach. The third graph shows that the graphoanalytical method gave an incorrect direction 
for the convexity on the section ABC for the purely elastic pulse passing into the material 
after the plastic flow has terminated~ A complete unloading wave, starting at the point L 
on the characteristic KL and terminating at the point R on the characteristic NR, and corre- 
sponding to a change in the parameter ~ in (16) from the value ~K to the value ~N is shown on 
the h--t diagram in Fig. 2 by the dashed curve LMR. This curve is independent of the specific 
value of the quantity am/O s. As the value of am/~ s increases, the point M will advance along 
this curve towards the point R and will reach R for the value 

�9 C O - -  C ~C" 0 - -  a "  O~ 

- -  . 

As the amplitude increases further, a second curvilinear section of the unloading wave appears 
which is determined by the boundary conditions on the part of the boundary NS, etc. to in- 
finity. This results from the momentum conservation law. To conserve the total momentum as 
the amplitude of the elastic pulse passing into the undeformed plastic material diminishes to 
Os, its duration should increase in an appropriate manner. 

However, the following two circumstances must be remembered for specific computations. 
Firstly, the Prandtl scheme becomes inapplicable for very large pressures. For instance, in 
the case of uniaxial compression deformation there results from the Prandtl scheme: a zero 
specific vol~e, i.e., infinite material density, is achieved for a finite compression stress~ 
which is physically absurd. Secondly, reverse plastic flow can start during unloading. This 
means that a plastic unloading wave line, behind which will be a domain of reverse plastic 
flow, should emerge from the t axis between 0 and t K on the h--t-diagram at a certain time. 
In this case, new boundary conditions on this line will influence the solution of the problem 
so that the solution elucidated above will become inapplicable. 
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